Design and optimisation of a high-temperature silicon micro-hotplate for nanoporous palladium pellistors

نویسندگان

  • S. M. Lee
  • D. C. Dyer
  • J. W. Gardner
چکیده

The conventional design of the heater in a silicon micro-hotplate employ a simple meandering resistive track to form a square element. We show that this heater structure produces an uneven thermal profile characterised by a central hot spot with a significant variation in temperature of some 50 8C across the plate at an average temperature of 500 8C. Four novel micro-heater designs are reported here and fabricated on hotplates with an active area that ranges from (200 £ 200) mm to (570 £ 570) mm in order to vary systematically the ratio of membrane to heater length from a value of 5.0–2.7, respectively. All the designs have been simulated using a 3D electro-thermo-mechanical finite element model and results agree well with thermal profiles taken using an infrared microscope. One of the designs, referred to here as ‘drive-wheel’ structure, performs best and reduces the lateral variation in temperature to only ^10 8C. The different resistive micro-heaters have been calibrated with the lowest power consumption being 50 mW at 500 8C, which is well below the power consumption of any commercial pellistor; the maximum temperature before rupture being 870 8C. The micro-hotplates were electrochemically coated with a 20 nm thick mesoporous palladium catalyst and the pellistors’ response tested to 2.5% methane in air. The micro-heaters were observed to be stable for a period of 1000 h and should provide a good platform for exploitation in commercial catalytic pellistors. q 2002 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermo-optical characterization of fluorescent rhodamine B based temperature-sensitive nanosensors using a CMOS MEMS micro-hotplate☆

A custom designed microelectromechanical systems (MEMS) micro-hotplate, capable of operating at high temperatures (up to 700 °C), was used to thermo-optically characterize fluorescent temperature-sensitive nanosensors. The nanosensors, 550 nm in diameter, are composed of temperature-sensitive rhodamine B (RhB) fluorophore which was conjugated to an inert silica sol-gel matrix. Temperature-sensi...

متن کامل

Reliability Design and Electro-Thermal-Optical Simulation of Bridge-Style Infrared Thermal Emitters

Designs and simulations of silicon-based micro-electromechanical systems (MEMS) infrared (IR) thermal emitters for gas sensing application are presented. The IR thermal emitter is designed as a bridge-style hotplate (BSH) structure suspended on a silicon frame for realizing a good thermal isolation between hotplate and frame. For investigating the reliability of BSH structure, three kinds of fi...

متن کامل

W-doped nanoporous TiO2 for high performances sensing material toward acetone gas

W-doped TiO2 with nanoporous structure was synthesized by a one-step low temperature hydrothermal method using TiOSO4 and (NH4)6H2W12O40•xH2O as titanium and tungsten sources. Structure, morphology, specific surface area and chemical state of samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). W-doped nanoporo...

متن کامل

Fabrication and Optimization of a Nanoporous Platinum Electrode and a Non-enzymatic Glucose Micro-sensor on Silicon

In this paper, optimal conditions for fabrication of nanoporous platinum (Pt) were investigated in order to use it as a sensitive sensing electrode for silicon CMOS integrable non-enzymatic glucose micro-sensor applications. Applied charges, voltages, and temperatures were varied during the electroplating of Pt into the formed nonionic surfactant C16EO8 nano-scaled molds in order to fabricate n...

متن کامل

Modeling, Fabrication and Testing of a Customizable Micromachined Hotplate for Sensor Applications

In the sensors field the active sensing material frequently needs a controlled temperature in order to work properly. In microsystems technology, micro-machined hotplates represent a platform consisting of a thin suspended membrane where the sensing material can be deposited, usually integrating electrical stimuli and temperature readout. The micro-hotplate ensures a series of advantages such a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microelectronics Journal

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2003